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COMPLETE SOLUTIONS TO FAMILIES 
OF QUARTIC THUE EQUATIONS 

ATTILA PETHO 

ABSTRACT. Using a method due to E. Thomas, we prove that if laI > 9.9 1027 
then the Diophantine equations 

4 3 2 2 3 4 
x -ax y-x y +axy +y = 

and 
4 3 2 2 3 4 

x -ax y - 3x y + axy +y =i1 

have exactly twelve solutions, namely (x, y) = (0, ? 1), (? 1, 0), (? 1, ? 1 ), 
(:F 1,? 1), (?a, ? 1), (? l, +Fa) and eight solutions, (x, y) = (O, ? 1 ), 
(I?, 0), (?I, ?1), (?I, F1), respectively. 

1. INTRODUCTION 

Let F(x, y) E Z[x, y] be homogeneous of degree n > 3 and irreducible. 
A classical problem of number theory is to solve completely the Diophantine 
equation 

F(x, y) = +1, 

commonly known as a Thue equation. 
Let K = Q(a), where a denotes one of the roots of F(x, 1). If n = 4, 

then the maximal order of K has unit rank 1, 2, or 3 according as F(x, 1) has 
four, two, or no imaginary roots. This will be called the unit rank of the Thue 
equation. 

Ljunggren [4] as well as Nagell [5, 6] examined the number of solutions 
of certain classes of quartic Thue equations of unit rank two and one. They 
proved that the number of solutions is at most 10 and 8, respectively. Stroeker 
[10] gave a method which enabled him to solve quartic Thue equations of unit 
rank two. Using numerical Diophantine approximation techniques, Petho and 
Schulenberg [7], Steiner [9], and de Weger [14] solved some single equations of 
unit rank 3. Stroeker and Tzanakis [11] applied Skolem's p-adic method for 
the same purpose. 
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Recently, all the solutions to infinite parametrized families of cubic Thue 
equations were found by Thomas [ 12, 13]. His method is based on an A. Baker- 
type lower bound for linear forms in the logarithms of algebraic numbers. 

In this paper we shall use Thomas' method for two classes of quartic Thue 
equations of unit rank 3. More precisely, let a be an integer and 

fa(X Y) =X4- ax3y -x2y2+ axy3+ y4 =(x-y)x(x+y)(x- ay)+Y 

as well as 
ga(x, y) = x4 - ax3y - 3x2y2+ axy3 + y4 

In ?2 we show that if lal :# 2, then fa(x, y) is irreducible, and similarly, if 
a # 0, then ga(x, y) is irreducible. 

It is easy to check that 

(1.1) fa(X, Y) = 

is solved by (x, y) = (0, ?1), (?1, 0), (?1, ?1), (F1, ,?1), (?a, ?1), 
(? 1, ma), which we call trivial solutions. The only nontrivial solutions we 
know correspond to lal = 4, namely (x, y) = (?8, ?7), (?7, T8) for a = 4, 
and (?8, F7), (?7, ?8) for a=-4. 

Our main result is 

Theorem 1. The equation 

(1.2) fa(x 5y) =m M il 

is solvable only for m = 1. If lal > 9.9 . 1027, then (1.2) has only the trivial 
solutions. 

Using the reduction procedure of Baker and Davenport [1], more precisely 
its implementation by Gaafl and Schulte [3], we were able to prove 

Theorem 2. If 3 < lal < 100, then (1.2) has only the trivial solutions except for 
lal = 4, when it has the four nontrivial solutions given above. 

Similarly, 

(1.3) ga(x,Y)=?l 

has the trivial solutions (x, y) = (0, ? 1), (? 1, 0), (?1, ?1), (?1, F1) 
For lal = 1 we found four nontrivial solutions, namely (x, y) = (?2, ?1), 
(?1, 2) for a = 1 as well as (x, y) = (?2, ?1), (?1, ?2) for a =-1. 
Using the method of the proofs of Theorem 1 and Theorem 2, we get 

Theorem 3. If 0 < lal < 100 or IaI > 9.9. 1027, then (1.3) has only trivial 
solutions except for lal = 1, when it has the four nontrivial solutions given 
above. 

Comparing these theorems with the above-mentioned results of Ljunggren 
and Nagell, we see that quartic Thue equations of unit rank three may have 
more solutions than those of smaller unit rank. 
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Let q > 1 be a real quadratic unit with conjugate a', and let 
n in 

(1.4) n rC n I 1 

for n E Z. It is easy to see that Rn E Z for all n E Z. Using the results of 
Theorems 1, 2, and 3, we also prove 

Theorem 4. Assume that 0 < I/ + q'I < ?100 or Iq + 1'i' > 9.9. 1027 and 

(1.5) 4u2 +V2=Z2 

with (u, v) = (Rne Rn+1) or (Rn+l, Rn) and z E Z. Then n = 0, or n = 

2, -3 (where ir r' = 1), except when either I/ + '1 = 4, rpl = 1, n = 4, 
(u, v) =(56, 15), and n = -5, (u, v) = (-56, -15) or Ire + r1q 1, Iq' 
-1, n =3, (u, v) = (2, 3), and n = -4, (u, v) = (-2, -3). 

2. ELEMENTARY PROPERTIES OF THE POLYNOMIALS 

Let a,beZ and fa b(x)=x4 -ax3+bx2+ax+1. Thenwehave 

Lemma 2.1. Let p be a zero of fa, b(X) and a: Q(fo) -+ Q(fo) a mapping with 
a(?) = -1/( . Then a is an automorphism of the field Q((o) and of the module 
Z[q9]. Moreover, the maximal invariant subfield of Q(9o) corresponding to a is 
Q(( - 1/^p) 
Proof. The first assertion is true because -1 /p is also a root of fa b (X). 

We have 
-1/ = 3 - ag2+ +b+ a E Z[(], 

which proves the second assertion. 
Let L denote the maximal invariant subfield of Q(o) corresponding to a. 

Then the degree of Q(fo) over L is equal to the order of a, which is either 
one or two. 

Let q = ( - 1/? . Then Q(i1) is a subfield of L because a(Q) = a . Thus, if 

( ? Q(q), then [Q(o):Q(q)]=2 and L= Q(q). 
We have 

fab(X)X2((x- -a(x- )+b+2), 

hence q is a zero of the polynomial y _ ay + (b + 2), i.e., q is of degree one 
or two. 

Assume that p E Q(iJ). If 71 E Q, then Q(io) = Q = L, otherwise [Q(Ir): 
Q]=2, andthereexist u,v E Q with p =u+viq. Then a(p) =u+va(q), 
andby a(q)=I we have -1/( =u+v7=(o or p 2=-1. Alsointhiscase 
the mapping a is of order one, i.e., L = Q(q). The lemma is proved. 5 

It is clear that fa(x, 1) = fa -1(x) and ga(X, 1) = ga -3(X) . 



780 ATTILA PETHO 

Corollary 2.2. Let a E Z. If jaj I: 2, then fa(x, 1) is irreducible, and similarly, 
if a # 0, then ga(x, 1) is irreducible. 
Proof. Let (a be a root of fa(x, 1), and q = ( - 1/ep. Then q is a zero of 
y2 _ ay + 1. It has degree two over Q except when IaI = 2. From the proof 
of Lemma 2.1 it follows that [Q((): Q(q)] = 2, hence [Q(o): Q] = 4. The 
proof of the other assertion is similar. 5 

Let a > 0 and a be the largest real root of fa(x, 1) = 0 and set E = a- I/a. 
Then e is a zero of the polynomial y2 _ ay + 1 . Denoting the other zero of 
this polynomial by e', we get 

a + a-4 e + +4 
(2.1) - 2 and a= 2 >6, 

2 / 2 (2.2) e '= 2 and 16= 2 

We conclude that the roots of fa(x, 1) = 0 are a, fi, -1/a, -1/fl, and it is 
obviousthatfor a > 3 wehave a E (a-1, a) , E (1, 2),and -1/a, -1/ E 

(-1 , 0). 
Similarly, the zeros of ga(x, 1) are a1, 1 -1/ a1, -1/fy, with 

2+ 8 +2 4 a + Va + 4 + 6+ 
161= 2 and a,= 

2 I 2 

/ a- a+4 ++ 
161- 2 and 16l= 2 

If a > 1, then a, E (a, a+l), 1,1 E (0, 1), -1/a1 E (-1, 0), and -1/fl, E 
(-2, -1), while a, E (2, 3) for a= 1. 

3. FUNDAMENTAL UNITS IN THE ORDER Z[(O] 

The aim of this section is to find a system of fundamental units in the order 
Z[4 ], where (0 is one of the zeros of fa(x, 1) or ga(x, 1). The result will be 
proved only in the first case because the proof of the second one is essentially 
the same. 

Theorem 3.1. Let 0 be one of the roots of fa(x, 1) = 0. If a = 3, then 
( - 1, (, (q? - 1/(0)1/2 and, if a > 3, then (0 - 1 , , (0 + 1 is a system of 
fundamental units of the order Z[i0]. 

Theorem 3.1a. Let i/ be one of the roots of ga(x, 1) = 0 and a > 0. Then 
/- 1, VI, V + 1 is a system offundamental units of the order Z[ V']. 

Remark. The group of units (?9 - 1 e, , p+ 1) as well as (V - 1, V, qv + 1) 
does not coincide with the unit group of the maximal order of Q((P) and Q(V/), 
respectively, as one can see in the example a = 6 in the first case, and a = 4 
in the second one. But to prove our main theorems, we need exactly the results 
stated above. Before proving Theorem 3.1, we establish three lemmas. 
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Lemma 3.2. Let e > 1 be a unit in a real quadratic number field. Then e is a 
fundamental unit in Z[e], except when e = (3 + x/5)/2 = ((1 + 5)/2)2. 
Proof. Assume that there exists co E Z[e] and an integer k with IkI :$ 0, 1 
such that 

(3.1) e co 

As e > 1, replacing co by o-1 if necessary, we may assume co > 1 and k > 1. 
There exist integers xn , Yn , for any n > 0, with 

(3.2) cl) = x, + Y e. 
Denote by y' the conjugate of the element y E Q(e). Then 

In I 
(t 0 n + Yne 

and so 
ln In n In 

yn= I = cY / 

Here we used o-o' = yI(e-e'), hence y1 > 0. We have (aco- o )/(a)-i)C e 
Z for any n > 0 because co is a quadratic algebraic integer. Hence, if there 
exists a k > 1 with (3.1), then y, = 1, and so 

con c In 

Yn = 
i(0-CoI 

Therefore, the sequence {ynl}'n=o satisfies the recursion 

(3.3) Yn+l = (o)+ )Yn - ((O')Yn- I 

where co + CO' E Z and IVcolI = 1 . 
If Coco' = 1, then (o + ?o > 3, and so Yn+1 > 2yn > 2', which means that 

(3.1) cannot hold in this case. 
If coo'= -1, then again by (3.3) 

Yn+l > ((o + a0))Y2 > Y2 a) + 0> 1> 

hence (3.1) can hold in this case only if k =2 and o + (0 = 1 . Then co= 
(1 + V'5)/2 and e = (3 + v3)/2 = 02, which corresponds to the case a = 3. 
The lemma is proved. 5 

Lemma 3.3. Let rq be a root of fa(X, 1) = 0 and e = v/ -/. Then Z[e]= 
Q(e) n Z[(]. 
Proof. Since 

(3.4) e = - =9+((?-)(i+1)((-1a)= 
3 - ap + a E Z[], 

we have Z[e] c Q(e) n Z[q#]. 
Let y E Q(e) n Z[(]. Then there exist bi E Z (i=O .. ., 3) and ao, al E Q 

such that 
a0+a e=bo+b1bo+b2 o2 +b3 o3. 
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Using (3.4), we get 

ao+aa1-aalo +a1p =bo+bp?9+b2?9 +b3p 

which implies ao, a, E Z immediately. 5 

As in ?2, let us denote by a the largest real root of fa(x, 1) = 0. In the 
sequel we order the conjugates of a so that a(1) = a, a(2) = a() = -1/(, 
(x(3) =f,, a((4) = a(fl) = -1/fl. This implies the ordering of the conjugates for 
any a E Q(a) = K. 

Lemma 3.4. Let X E Z[a] be such that a(i) > 0, i = 1, ... , 4, and 

(3.5) co (1) co (2) = CO 
(3) 

co 
(4) 

Further, let 

(3.6) W l = CO(1)n + co(2)n = bn, + c 

for any n > O, where bn, Cn E Z. Then we have 

(3.7) b2n =bn (a)(1)n + co(2)n + co(3)n + co Wn) 

for any n > 0. Moreover, if 

max{(i) li = 1, ... } = max{,f )( 5 O 
9(4)} 

max a) 1), 5 J(2)}5 
then bn < 0 in the first case, and bn > 0 in the second, for any n > 0. 
Proof. It is clear from Lemma 3.3 that Wn E Z[e], hence (3.6) holds. 

Denote by I: K = Q(a) -* Q(fl) the isomorphism defined by P(a) = 18. 
Then we have TP(y l)) = y(3) and Py(/2)) = y(4) for any y E K. Furthermore, 

v'(e) = e 
/ 

Using these properties of TI, we get 

(3.8) P(Wn) = CO(3)n + co(4)n = bng + cn. 

Subtracting (3.8) from (3.6), the following analytical formulae can be derived 
for bn: 

co(1)n + o(2)n co(3)n _ o(4)n 
( . ) n e ~-a -a) (3.9) bn 

Using (3.5), we get 
2 2 

b Wn' q( Wn) = b( fW ), 

which is exactly (3.7). 
If max{a(') Ii = 1, ... , 4} = max{wa(3), co(4)}, then by (3.9) there exists an 

no such that bn < 0 for any n > no . By assumption, Wn + (Wn) > 0 holds 
for any n, hence (3.7) implies that bn < 0 for any n > 0. The proof of the 
other case is exactly the same. n 
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Proof of Theorem 3.1. Without loss of generality we may assume p = a. Let 
e = a - 1 /a = (a - 1) (a + 1) /a. Then a - 1i, a, a + 1 is a system of fundamental 
units if and only if a - 1, a, e is. To prove this, it is enough to see by [8, 
Theorem (7.1), Chapter 5, p. 368] that none of the equations 

(3.10) a= k 

(3.11) a -1 = a w 
k 

(3.12) e = (a -1)Iahw k 

is solvable, where co E Z[a] and 0 < 1, h < k, k > 2 are integers. For 
y E Q(a) let 5 = a(y), where a denotes the automorphism defined in Lemma 
2.1. 

(a) Assume that (3.10) is solvable with k > 1 . Then we may assume co > 1. 
From (3.5) we get -1 = a-6 = (t)O- ,hence k is odd, coo =-1, and 0 > co. 

On the other hand, 

k k 0)k +-0k 
(3.13) e=a +- =cko +?U =(C+>co+ 

Both numbers co+ co and (co + ?i k)/(w + -6) belong to Z[a], and e is a unit, 
hence wo + Go is a unit, too. Furthermore, o + ?) = wO + co, so cc + co E Q(e), 
hence W + E Z[e] by Lemma 3.3. By Lemma 3.2 there exists an integer h > 1 
such that co + ci = e h, which contradicts (3.13). 

(b) If (3.1 1) were solvable with k > 1, then 

(a- i)(a+ 1) = l)( 1) = (l)h(?Oi)k 
a 

would be satisfied, i.e., e = ?(coU) . But w?)i is a unit in Z[E], which contra- 
dicts Lemma 3.2. 

(c) Finally, assume that (3.12) is solvable with k > 1. Let us first make 
the additional assumption that h = I = 0. Then e = co (l)k = CO (2)k and e' = 

@(3)k = Ov (4)k, i.e., (1) = - 
O (2) and o(3) - i@(4) because K is real. Lemma 

3.2 implies k = 2, w 1o92) = -e, and w(3 co(4 = -e. We may assume 
without loss of generality that c1) = - -co(2) = V and o (3) = -O(4) = V7. 
Then we have 

( 
(1) + (3))2 

(1)2 + ( _(3) + 2 E +,e/+ 2 a + 2 

i.e., w+co (3) = via7 . One can derive () +o(4) = and w(2) +Wc3o = 

- Ia-7 similarly. 
The splitting field of fa (x, 1) has an automorphism given either by the per- 

mutation (f8, -1/fl) or by (a, fi, -1/a, -1/fl). This automorphism maps 
either Cw(1) to CO(1) and co*(3) to o(4) ), hence V.~V~ to yKaT7-, or w(1) to 
c)(3) and co(3) to 0(2), hence Va~V~ to -VaI~, which is impossible. 
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If / = 0 and h > 0, then we get 

62 (_ 1)h (a)(1) co (2))k 

from (3.12). This implies k = 2, h = 1 by Lemma 2, which is obviously 
impossible. So we may assume in the sequel that 1, h > 0. 

Considering the product of the first and second conjugates of (3.12), we get 
/ = 2 and w(l) co(2) = + 1 for the possible solutions. Hence k is odd. 

If h is odd, too, then replacing a) by wa, we may rewrite (3.12) as 
2 h-k k 

e = (a - 1) a co 

where h - k is even and -k < h - k. So it is enough to prove that (3.12) is 
unsolvable in integers l, h, k with 1 = 2, -k < h < k, h even, k > 3 odd. 

Assume on the contrary that it is solvable. Then considering the sign of the 
conjugates of (3.12), we get 

(3.14) (1) ( 
o(2) 

c)(3) c)(4) > 0 

and 

(3.15) (1) (2) (3) c (4) =1 

It follows from (3.12) that 

(3.16) o(1)k a+1 1 1 
(a -1)aah ah 

and 
(2)k a - 1 h+1 h+1 

(3.17) cow T- 1a a 

As a < a, these inequalities imply 

co() < 
1 f h > 0 

and co(2)< 
a ifh?0, 

'.a if h <0 < 1 if h <0. 
Using (3.15), we get 

(3.18) 1 < coJl) + co (2) < a + 1. 

We shall now show that if h = 0 or -2, then 

(3.19) max{w)(') I i = 1 , ... , 4} = c(3), 

and if h is even and h $A 0, -2, then 

(3.20) max{ a(1), w }(2)} > max{a)(3) }(4) 

holds. 
If h > 0, then a)(2)k > 1 > O)(1)k by (3.16) and (3.17). Simple calculation 

shows that 
/ (2) 0 k h/2 h/2 2 
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By (2.1) and (2.2) we have 

a- 1 

Hence, if h = 0, then (2) < (3), which proves (3.19). Otherwise, if h > 0, 
then as a > 4 we have 

a/3(a- 1)(f - 1) > (l) => 1, 

and so (3) < (2) 

Similarly, 

( :2) k [(a- 1)(3 + l)ah/2 2 

(4) flL(h+2)/2 

and as the inequality 
(a h/2 (a- 1)(f+ 1)> 1 

is obviously true, we have a (2) > c (4) . This proves (3.20) for h > 0. The case 
h < 0 can be settled similarly. 

Put Bn = C(l)n + c(2)n for any n > 0. As we have shown in Lemma 3.4, 
there exist integers bn Cn E Z with Bn = bne + Cn . 

Assume first that h $ 0, -2. Then (3.20) holds and so bn > 0 for any n > 0 
by Lemma 3.4. The second inequality (3.18) implies c? < 0 immediately. Since 
by (3.15) 

>(Bn) = at)(3)n + co(4)n = bn e' +c > 1 

holds for any n > 0, we have b1 > (1 - cl )e. Using this again in (3.18), we get 

a+ 1 > b e +c > (1 - c)e2 +c =-c(e -1)+ +82 > 2, 

which is impossible. Hence (3.12) cannot hold if h :$ 0, -2. 
Finally, assume that h = 0 or h = -2. For h-= 0 and h = -2 we get 

B a 1 1) + (a - 1)a -3e + 4a - 2 k (a -1)a a+ 1 

and 

B (a+1)a + a-i + 1 -38+4a+2 k a- 1 (a+1)~a 

respectively from (3.16) and (3.17). 
Hence, as 1, e is a basis of the module Z[e], bk = -3 must hold with 

k > 3 . 
We have seen that in these cases (3.17) holds, thus b1 < 0 by Lemma 3.4. 

From the first inequality (3.18) we get cl > 1 - bie, which implies that 

(1) + *** + (w4) = b a + 2c > -bl (2e - a) + 2 > 4. 
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Hence, b2 < -4 by (3.7), and as the sequence bn is monotonically decreasing, 
bn < -4 for any n > 2. Hence, bk= -3 for k > 3 cannot hold. Theorem 
3.1 is proved. 5 

4. APPROXIMATION PROPERTIES OF THE SOLUTIONS OF (1.2) 

Let (x, y) E Z be a solution of (1.2). If x = 0, then y = +1, and if y = 0, 
then x = +1 . Furthermore, the pairs (x, y) and (-x, -y) are both solutions 
or are not solutions of (1.2), hence we assume in the sequel that xy :$ 0 and 
y > 0. 

Let (x, y) E Z2 be a solution of (1.2), and y = x - ay. Then y E Z[a], 
and we can reformulate (1.2) as 

(4.1) fa(x y) = NK/Q(Y)=l 

where NK/Q(Y) = y(1) y(2) y(3) y(4) denotes the norm of the element y. The last 
equation means that y is a unit in the order Z[a]. Hence, if a > 3, then there 
exist integers a0, a1, a2, a3 such that 

(4.2) Y = (-1)a (a - 1)alaa2(a + 1)a3 

The norm of each of the numbers (-1), a - 1, a, and a + 1 is 1, hence on 
the right-hand side of (4.1) only the + sign is possible. This proves already the 
first assertion of the main theorem if a > 3. For a = 3, replacing a + 1 with 
(a - 1/a)1/2, the above considerations remain valid. 

In the remaining of this section we prove that if (x, y) E Z2 is a solution of 
(1.2) with y # 0, then x/y is a good approximation of one of the conjugates 
if a. Hence, we can divide the solutions into four distinct classes, and it is 
enough to examine only two of them. 

Lemma 4.1. Let (x, y) E Z2 be a solution of (1.2). Then (-y, x) is also a 
solution. Furthermore, if y $ 0, then 

(1.3) -1<x/y<a. 

Proof. The polynomial fa(x, y) satisfies the identity fa(X, Y) = fa(-Y, x), 
from which the first assertion follows at once. 

If y # 0, then we get 

(1.4) y4a- a) (x + 1 ) ( + i 4f ) =1 

from (4.1). The inequality x/y < -1 implies 

=y 4a(- 
X 

> Y4(_ -a) -+ )(1, (-+ 1 

=y 4NKQ(a + 1) = y , 

which is impossible. One can get a similar contradiction assuming x/y > a. 
the lemma is proved. 5 
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Let (x, y) E Z2 be a solution of (1.2) with y # 0. As (-x, -y) and 
(-y, x) are also solutions, we may choose x > 0 and y > 0. Clearly, 

x x x 1 x 1 
--Cal< --p < -+ < -+ 
y y y a y ,8 

So, either x/y - a > 0 and then x/y - a = mina<(<4{x/y - aJi)}, which is the 
characterization of a Type I solution, or x/y - a < 0 and then x/y - /1 < 0, 
as the product Hi4 , (x/y - a(i)) is positive. But then 

x x x lxi 
0 <,- < min a - --+ -' - + 

which is the characterization of a Type II solution. 

5. SOLUTIONS OF TYPE I 

Throughout this section, a solution of (1.2) means a solution of Type I. Let 
e = a - 1/a and e' = /B- 1/fl as in ?3. We assume, furthermore, a > 3. 

Lemma 5.1. Let (x, y) E Z2 be a solution of( 1.2) and put y = x - ay. Further, 
let ao E {0, 1} and let (al, a2, a3) EZ3 be as in (4.2). Then ao = 0, al +a2= 
u is even, a, + a3 = -v < -1, 

V /V 

(5.1) xy= 

and 
v+1 /v+1 

(5.2) x2 2 e - e 
le-c 

Proof. The solution is of Type I, hence y > 0 and ao = 0. The equation (4.2) 
implies 

ya(y) = (-l)U-V = X 2 2 Xy6 _ y2 2> 

hence u is even. Further, we have (x2 _ xyg - y 2)(x2 - xyg - y2) = 1 and 

(x xye, y (x - fly)(x + y/fl) > 1, hence x - xy- _ y2 < 1, and so 
v > 0. Therefore, 

(5.3) x2- xy 2 - y = e 

and 

(5.3a) x2- ' _ y2 =V 

which imply (5.1) and (5.2) immediately. 
If v = 1, then (5.1) implies xy = 1, hence x/y = 1, but then (x, y) is a 

solution of Type II. The lemma is proved. 5 

Corollary 5.2. Under the same assumptions as in Lemma 5.1 we have 

ev/2 v/2 

(5.4) a Y a-1 
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Proof. We have a - 1 < a < x/y < a by Lemma 4.1, and so (5.1) implies 

(a - 1)Y < e '< a-1' 2 a -- C 

as e - a = Va 2_ 4> a - 1, which proves the second inequality in (5.4). 
We have v > 2 by Lemma 5.1. Under this assumption an easy computation 

shows that 
V /V V 

C 
-C CI- 

This inequality, (4.3), and (5.1) imply the first inequality in (5.4). 5 

Lemma 5.3. Let the assumptions be the same as in Lemma 5.1. Then we have 

(5.5) a - 1 -3v/2 < x - ay < 8-3v/2 

a - 1 v/2 v/2 
(5.6) a+16 <xfly <e 

(5.7) ,ev/2 1 a+1 v/2 

Proof. We know that a < x/y < a and a > 1. From 8a2 > 36 it is easy to 

deduce that + 4 > a. Combining these inequalities, we get 
X 1 1 2 

(5.8) a + +1>-+ - > a+- + >a. 
Y a a 

We can rewrite (5.3) as 

y -+- (x-ay)=e'v, 

which, together with (5.4) and (5.8) implies (5.5). 
By (5.3a) and fl > 1 we have 

1 V 1 V a - 1 /2 
x - fly = 1> 1 > C - 

(x/y +1/13)y (a +1/fl)y a+ 1 
and 

x -flyY= (--17) y<(a - ,)y < evl, 

which proves (5.6). 
We have finally 

a + 1 > x + 1 > - + 1 > a. 
y fl y a 

Combining this inequality with (5.4), one gets (5.7). El 

Lemma 5.4. Let the assumptions be the same as in Lemma 5. 1. If al = a3, then 

a,=-1 andx=a,y=1. 
Proof. If a, = a3, then v is even, say v = 2w, with w =-al. For n > O 
put 

En In 

H C C and 'S = 
C -Cn~e C 
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Then Hn, Sn E Z and H2n = H Sn * Using this notation, we have 

(5.9) xy = H =HwSW 

(5.10) x2 - y22 = H2+1=SH+ 1 

from (5.1) and (5.2) 
Assume that Hw < y < x < SW; then we get 

<2 2 
SwWw+1 lSW - Hw- 

by (5.10), i.e., 

(5.1 1) Hw- - 1 < Sw (SW- HW+l ) 

We have 
w+ _1 iw+ lw-i _ w-1 

S - =W W e --e' = -e _ - 

and equality holds if and only if w = 1 . On the other hand, Hw - 1 > 0, and 
equality holds again if and only if w = 1 . Hence, w = 1 , and so v = 2, which 

gives the solution described in the lemma. Otherwise, we have 

(5.12) y< Hw < SW < x. 

First we show that w = 2 cannot give a solution. Indeed, in this case, 
H2 = a and S2 = a2 _ 2, which imply y < a - 1 and x > a2 _ 1 by (5.12), 
and so x/y > a + 1, which is impossible by Lemma 2.1. We may assume in 
the following w > 3. 

From the proof of Lemma 5.3 and (5.12) we get 
1 -3w 

(5.13) x-ay< 2w <e 
SWe 

and 

(5.14) x-fly > (a-fl)y > 
a 

ew 
a 

On the other hand, (4.2) implies 

x -ay = (a - 1) 'aa2(a + 1)a3 = (2 1 aa'+a2 = alaa+a2 

and 
X _ fly = ,la, 1a,+a2 

Using now (5.13) and (5.14), we get 

log((a - /Ja) <a1 +a2 < 2al loga. 

Hence, 
loga log((a - /3)/a) 2a >log log fl 



790 ATTILA PETHO 

An easy computation shows that the right-hand side is larger than -6, and 
so al > -3. Of course, as a - > a -2 and /l > 1 + 1/2e, we have 

f6(a/) > (1 + 3)(a-2) >a 

if a > 6. For 3 < a < 6 direct calculation gives the same estimate. Hence, 
log(a/(a - fl))/log < 6. The inequality loga/ loge < 1 is obvious, so the 
assertion is true. 

We have seen that a = -2 is impossible, which proves the lemma. El 

Lemma 5.5. Let the assumptions be the same as in Lemma 5.1. Then 

(5.15) aA+a+)2a =-2log)log((B+l)l - 0) V +02, 

(5.16) a3 - al = 2 v + 93 

where A = logalog((fi+ 1)/(fi- 1))-logfllog((a+ 1)/(a - 1)), -1.26 < 02 < 
0.27, and -1 < 03 < 0.27. 

Proof. We get 

a -i 3 3 
log a - _v loge < al log(a - 1) + a2 log a + a3 log(a + 1) < - v loge, 

a -i v v 
log a+ + - loge < al log(fl - 1) + a2 log f + a3 log(fl + 1) < - loge, 

a +1 22 2 

a, + a3 = -V 

from (4.2), (5.5), (5.6) and from the definition of v. This system of inequalities 
implies at once 

log a+1 logfl < -Aa3 - VIv < -log a+1 loga, 

log a- llog-+ < Aa-+1 

where 

V, = log(a - 1) log f, - 3 loge log f, - log(,B - 1) log a - 1 loge log a 

and 

2 = log(a - 1) log -- 32loge logfi+l 

)lga +1 1 '6lga+ 1 
-log(f,-l)log - logelog __ 

Elementary computations show that 

V 1 = 2-lel,, 2A elog 1 1 
V,'=2A -1oge log fl V2 = 2A -1oge log. l1. 
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Hence, 

1 loge log((fl + 1)/(f - 1))) 

-2 log 8 log((fl + 1)/( f - 1)) + , 
A +92' 

where 
log 

a 1 log fl 
+ 1 < 92 < 

2 
log 2 log a + 

This implies that if a > 4 then -1.26 < 02 < 0.27. 
Similarly, 

a3 -a=v + 2a3 =v+ 2( - 1 + loge log f v + a3 = 2 logeo log f V + 03 

where 
1 2 a+ loga] < 03 < Alog a_1 log, 

hence -1 <03 < 0.27. 0 

Lemma 5.6. Let the assumptions be the same as in Lemma 5.1 and put 

Al = e lo a l _ A a 3 +22) log fl + (a3 - al,) log f +l 

Then 

(5.17) 0< 1A11 < 3.1 le2v- 

Proof. Using the notations introduced at the beginning of ?4, we get 

(a+) l 3) -_(a - fl)y (4) (f+ ) (1) 

This implies by (5.5), (5.6), and (5.7) that 

0 < + 1/flyY34 - 1 =J+1/3/ e)< a -2v < v3 . 2v-1 
C-fi Y(4) 

1 - lY(4) ae-fl a-i <3. 

If v > 1, then 3e-2vl < 0.06, and using Lemma 2.2 of de Weger [14], we get 

log , _/ + logy(3) _-logy(4) < 3.1 .-2v-1 

which is equivalent to (5.17) by virtue of (4.2). 0 

Lemma 5.7. Besides the assumptions of Lemma 5.1 suppose that a, $ a3 . Then 

(5.18) v > e1,lgo. 

Proof. By Lemma 5.1 and a, # a3 we have u > 3. Hence, a, + a3 + 2a2 < -5 
and a3 - a, > -1 by (5.15) and (5.16). 

Assume that a3 - a, = -1 . Then 

Al < log ae + 1/Jl _ + log 
f 

4 - 4 fl < -4log. 
(f + 1)(ae- fJ) 



792 ATTILA PETHO 

On the other hand, fl > 1 +e'/2, hence ft2 > 1 + e', and so 4logyf > e 1 
in contradiction with (5.17). Hence a3 - a, > 1 . In this case, the first and 
the third summand of A, are positive while the second is negative. Since 

log((a + 1/ft)/(al - fi)) > 3. e-2- , (5.17) can hold only if 

(a, + a3+ 2a2) logf + (a3- a,) logf 1 < 0, 

i.e., 

-(al +a3 + 2a) logf> log _ +log2. 

Further, log f = log(l + (ft - 1)) < ft - 1 because of 1 - 1 < ., hence 

-(al +a3+2a2) > A 1logf_ 1 + log2 > eloge+elog2. fl -i 

Here we also used (2.2). We have -(a, +a3+2a2) < 2v+ 1.26 by (5.15), which 
together with the last inequality implies (5.18). a 

Theorem 5.8. If a > 9.9. 1027, then (4.1) has no solution of Type I with v > 2. 
Proof. We use Corollary 2 of Blass et al. [2] to get a lower bound for IA1 I. 
In the sequel, h(y) denotes the absolute logarithmic height of the algebraic 
number y. Adapting the notations of the cited paper, we have n = 3, D = 8, 
and h(ft), h((f + 1)/(t - 1)) < loga, so we may take V1 = V2 I=loga. 
Further, 

(ac - A ) 
hence V3= 9 loga is suitable. If a > 10, then V2+ = V2 and V3+ = V3 are also 
satisfactory. It follows from (5.15) and (5.16) that la3 -al < la +a3 + 2a21 < 
2v + 1.26, hence Corollary 2 of Blass et al. [2] implies that 

1A11 > exp{ - 2 48 * e6 log3 a log(2 433 log3 a) 

* [log(2v + 1.26) + 12 log log a + 90](log 44}. 

If a > 100, then combining the last inequality with (5.17) we get 

(2v + 1) loge - log 3.1 < 1. 52 268 log3 a log(2 4033 log3 a) log(2v + 1.26). 

For a> 100, (5.18) implies 

(2v + 1) loge - log 3.1 > v loga, 

hence 

(5.19) v < 1.52 268 log2 a log(2 33 log3 a) log(2v + 1.26). 

Let Ha(x) = x - 1.52.268 log2 a log(240 33 log3 a) log(2x+ 1.26). Let Ma be the 
root of the equation Ha (x) = 0 for fixed a. Then v < Ma . On the other hand, 
v > a for a > 100 by (5.18). Hence, if ao denotes the root of the equation 
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Ha,(a) = 0, then for a > ao, (5.19) cannot hold. An easy computation shows 
92 99.127 that ao < 1.5 2 9.9* 10, which proves the theorem. E 

6. SOLUTIONS OF TYPE II 

In this section we assume that a > 3 and (x, y) E Z2 is a solution of (1.1) 
of Type II. Let y = x - ay, and denote by ao = 0 or 1, (al, a2, a3) EZ3 the 
corresponding exponents determined by (4.2). We refer in this section to these 
assumptions as general assumptions. 

Lemma 6.1. Under the general assumptions we have ao = 0, a, + a2 = u is odd, 

a, +a3 =V >0, 
V IV 

(6.1) xy= 

and 

(6.2) Y = = I 
le-6 

Proof. The same as the proof of Lemma 5.1. 0 

Corollary 6.2. Under the general assumptions we have 

ev/2 6v/2 
(6.3) < Y < i 

Proof. The same as the proof of Corollary 5.2. 0 

Lemma 6.3. Under the general assumptions we have 

(6.4) 2 e- 3va2 < fly--x < 1-(3v-1)/2 

(6.5) a - 2e v/2 < ay - x < av/2 

a+ 1 v/2 1 a+1 v/2 
(6.6) - < X +-y< 

vra- a va -i 
Proof. Similar as the proof of Lemma 5.3. 0 

Lemma 6.4. Besides the general assumptions, suppose a, + a3 + 2a2 = 1. Then 
a2 = 0 and (al, a3) = (1, 0) or (O, 1), which corresponds to the solution 
x=y= 1. 

Proof. Using the notation of Lemma 6.1, we get v = 1 - 2a2 > hence a2 < ? . 
Put w = -a2; then v = 2w + 1 . With the notation of the proof of Lemma 5.4 
we get 

xy = H2+1 = SwHw+l - 1, 
(6.7) 2- 2 

x2 -y2 =H ~SwH 
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from (6.1) and (6.2). For w = 0 this system of equations implies the solutions 
asserted, and it is easy to see that for w = 1 the system does not have any 
solutions. Hence, we may assume in the sequel w > 2, in which case Hw+1 > 

SW . 

We shall now prove that 

(6.8) y < Sw < Hw+l < x. 

Assume that this is not true. Then by (6.7), 
2 2 2 2 

SwHw = x - y < Hw+1 - SW 

i.e., 
2 

(6.9) Hw+I > Sw (Sw + Hw 

Using the definitions of Sw , Hw, e, and e', one can prove by an easy com- 
putation that 

(6.10) (SW(Sw+Hw)-H_+1)(e-e)2 = (a 2-2a-2)S2w 1-(a-3)S2w2+2S2-2. 

We have a > 2, hence a2 _ 2a - 2 > a(a - 3), and so the right-hand side of 
(6.10) is large, so that 

(a -3)(aS2w 1 2w-2) + 2(a2- 3) = (a - 3)S2w+ 2(a2- 3) > 0 

which contradicts (6.9); thus, (6.8) is indeed true. Using this precise bound, we 
get 

1 -(3w+1) 

The assumption a, + a3 + 2a2 = 1 together with (4.2) imply now 

(f+ 1 a3 -a, fly- X -(4w+1) 

fl f)=y/f)+X < 

hence 

(6.11) a - a < -(4w +1) loge (6.11) ~3 1 )log((fl+ 1)/(fl - 1)), 

Similarly, 
ay - x = (a - f)y + (fy - x) > (a - f)y 

and 
1 a_+1 
-y +x < y. 
.a a 

Thus, by (4.2), 
( + 1) a3a_ y X > a(a A) 

a - 1 y/a +x af+ 1 
and so 

a log((a - fl)/(afl + 1)) a3a1> log((a +1) /(a -1)) 
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Comparing this with (6.1 1), we get 

4w + 1 < log((JJ + 1)/(fl - 1)) log((afl +1)/(a -fl)) 
loge log((a + 1)/(a-1 )) 

Both factors on the right are at most 2, hence w < 1, and the lemma is 
proved. 0 

Lemma 6.5. Suppose the general assumptions. If a > 30, then 

(6.12) a1+a3+2a 2=2logelog((a+l)/(a-l)) +0 
A 

and 

(6.13) a -a =-2v loge loga +0 

where A = log a log((fl + 1)/(fl - 1)) - log fl log((a + 1)/(a - 1)) , 0.95 < 02 < 1, 
and 0.4 < 03 < 1. 

Proof. The same as the proof of Lemma 5.5. 0 

Lemma 6.6. Suppose the general assumptions, and let 

A2 = log fl + hi +(a, + a3 + 2a2) loga + (a3 - a,) log + 1. 

Then 

(6.14) 1A21 < 1.1 -2v 

Proof. On the basis of the identity 

l + a) Y (-(f3-a)y 2=( a+ Y 

the proof is similar to that of Lemma 5.6. 0 

Lemma 6.7. Suppose the general assumptions, a, + a3 + 2a2 $ 1, and a > 30. 
Then 

(6.15) v > 51,6lgo. 

Proof. By Lemma 6.5 we have a3 - a, < 0 and a, + a3 + 2a2 > 0. Assume 
a3 - a, = 0; then (6.13) implies 

A03 
2 loge log a' 

and so 
a 
+a 
+2a alog((a + l)/(a- 1)) + <2 

log a2 

Hence, a, + a3 + 2a2 = 1, which is excluded in the assumptions. Therefore, 

a, - a3 > 0. The inequality (6.14) can hold only if 

(6.16) (a + a3 + 2a2 - 1) loga + (a3 -a ) log1< 

because of log((afl + 1)/(a - fJ)) > 1.1 * e-4 . 
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We have (a + 1)/(a - 1) = 1 + 2/(a - 1) and 2/(a - 1) < 2 , hence (6.16) 
implies that 

ala a g2.08 ga. 

Using now (6.13) completes the proof of the lemma. o 
Theorem 6.8. If a > 9.9* 1027, then (4.1) has no solutions of Type II with v > 1. 
Proof. The same as the proof of Theorem 5.8, apart from working with A2 
instead of A1. 0 

7. PROOF OF THE THEOREMS 

Proof of Theorem 1. At the beginning of ?4 we proved the first assertion, while 
Theorems 5.8 and 6.8 together with Lemmas 4.2 and 4.3 establish the sec- 
ond. 0 

Proof of Theorem 2. We cannot give here the proof in the classical sense, because 
it is a lengthy procedure on a computer. We rather describe the method of the 
computer search. 

Assume first that a > 3. Computing the solutions of Type I, we may assume 
byLemmas 5.1 and 5.4that v > 2. Let B1 = -(a,+a3+2a2) and B2 = a3-a,. 
Then we have 

2v + 1.26 > B1 > B2 > 1 

by Lemma 5.5 and by the proof of Lemma 5.7. Applying now Corollary 2 
of Blass et al. [2] to A1, we get B1 < 1032 for a < 100. Performing for 
4 < a < 100 a modified version of the reduction procedure of Baker and 
Davenport [1], implemented by Gaal and Schulte [3], we get that B2 < 6. For 
the remaining small values of v we can compute the solutions from (5.1) and 
(5.2). 

The nontrivial solutions of Type II satisfy v > 4 by Lemmas 6.1 and 6.4. Let 
now B1 = a? + a3 + 2a2 and B2 = -(a3 - a,). Then computing for 4 < a < 30 
lower and upper bounds for 02 and 03 (defined in Lemma 6.5), we get 

2v > B2 > B > 1. 

Applying again Corollary 2 of [2] to A2, we get B2 < 1032 , which can be 
reduced to B2 < 4 for any 4 < a < 100. The remaining small values of v can 
be checked for solutions, using (6.1) and (6.2). 

The only nontrivial solution we found was a = 4, a, = 4, a2 = -1, a3 = 0 
which corresponds to the solution stated in the theorem. 

For a = 3 one can solve (2) similarly, starting from the equation 

(a - )al aa2,ea3 =x - ay 

instead of (4.2). Here, e0 = (a - 1/a)1/2, which together with a - 1 and a 
form a system of fundamental units in Z[a] by Theorem 3.1. 

The computation took a few minutes on an IBM PC computer. 0 
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Remark. Solving a quartic Thue equation of unit rank 3, one usually has to 
reduce the upper bounds for the coefficients of four linear forms each involving 
four logarithms of algebraic numbers (see Petho and Schulenberg [7], Steiner 
[9], and de Weger [14]). For this reason, the initial upper bound is considerably 
larger than the one we obtained. 

Proof of Theorem 3. The proof can be performed as that of Theorems 1 and 2. 
The details are left to the reader. 0 

Proofof Theorem 4. Let n E Z besuchthat (u, v) = (Rn, Rn+1) or (Rn+1 , Rn) 
is a solution of (1.5). Then (u, v) = 1. We may assume I > 1 without loss 
of generality. If n < 0, then Rn = Rn if I7' = 1 and Rn = (-1)nRn if 

Ad7 = -1, hence we may assume n > 0. 
There exist x, y E Z with (x, y) = 1, x 0 y (mod 2) such that 

(xy, x - y ) if u is even, 
(U. V) (X2 y2 4xy) if u is odd, 

because (1.5) is a Pythagorean equation. Hence, if u is even, then 

In in n+1 in+1 
(7.1) xy= or 

n+1 in+1I n inl 

(7.2) x y -= or 

Multiplying the first equation (7.1) by I and subtracting it from the first equa- 
tion (7.2), we get 

2 2 in 
X -77Xy-y =7 

Taking conjugates and multiplying the two resulting equations yields 

4 3 - - ,)X2Y2 XY3 + 4 = (22)n 3 4 
x -axy-(2- +7)yax yy=(7')?1 

where a = 17 + 771 . The polynomial on the left-hand side of the last equation 
is exactly fa(X, y) if I77' = 1 and g (x, y) if Id' = -1. 

Multiplying the second equation (7.2) by 77, subtracting it from the second 
equation (7.1) and performing the same procedure as above, we get the same 
polynomial. 

Similarly, for u odd, (x, y) E Z2 must be a solution of the equation 

hi E(xY)=X4 - 4ax3y - (2 - 167777)X2y2 + 4aXy3 +y4 = ?1. 

It is easy to see that hi a(x, Y) = fa(Y - x, y + x) and h_ ia(x, y) = 

-ga(X , Thoes1X2+,y)i 

Hence, Theorems 1, 2, and 3 imply the assertion of Theorem 4. 
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